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Below we analyze the asymptotic form of the velocity (Froude-number) dependence of the 
radiation energy loss (wave resistance) of nonlocally distributed mass sources equivalent to 
moving bodies. For three-dimensional bodies moving rapidly in a boundless uniformly strati- 
fied liquid and in a waveguide layer of finite depth, the asymptotic forms are similar (wave 
resistance R ~ InFrlFr 2 and R ~ i/Fr 2, respectively). For small bodies the leading term of 
the asymptotic form depends only on the dipole moment of the distributions of the sources, 
which can be calculated within the framework of the theory of a homogeneous liquid and is 
proportional to the volume of the body. 

The "paradox of infinite wave resistance" occurs for uniformly distributed sources, 
elongated in the direction of the motion. The wave number integral in the infinite problem 
and the mode series in the waveguide problem are logarithmically divergent because of the 
logarithmically large contribution of short waves (wave modes with high numbers). 

In the two-dimensional problem for a boundless liquid the wave resistance at high veloc- 
ities is inversely proportional to the Froude number, while in the case of a waveguide the 
number of excited modes drops as the velocity increases and the radiation vanishes altogether 
at supercritical velocities. 

i. Horizontal Motion in a Boundless Liquid. If the perturbations caused by a body 
moving in a density-stratified incompressible heavy liquid can be considered to be small and 
the effect of the body can be replaced by the equivalent effect of a distribution of mass 
sources m, the perturbations with velocity v, density 0, and pressure p will be found from 
the system of linear equations 

Or" 8 O jV 2 
o-T +Vp=Pg '  -~-+-~gv=O, Wv=m, 

which are written in the Boussinesq approximation, and the density of the unperturbed state 
with allowance for the buoyancy frequency N(z) is set equal to unity. 

In the case of a boundless uniformly stratified (N = const) liquid the energy loss per 
unit path length (wave resistance) of mass sources in uniform horizontal motion is repre- 
sented, in accordance with these equations, by an integral quadratic form with respect to 
the source [i, 2], 

t S dr dr' tv (r -- r') ra (r) ra (r'), R =---~- 
N 

0 

(i.i) 

The x axis here coincides with the direction of motion, the function F($) reduces to the 
cylindrical functions K0(g) at y2 + z 2 > N2z2/m2 and -(~/2)Y0($) with the inequality re- 
versed. 

At high velocities the source of the kernel of the quadratic form can be written as the 
expansion 
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whose lower coefficients are given by 

N 2 N2 N-i @2 __ 2x 2 __ 3z2) bl _ 11, 
a l  ~ 8--~': a2 = 128~ ' 8~ 

N 4 
b 2 = ~ [4z2fl + (2x ~ - -  f -  - -  z ~) 12 + f - -  3z~], 

g/2 

' n ( y , z ) :  4 I" do: s in  e in(~ z 2sin 2 eos~cr %- J (n~) V I a - -  f 
0 

The velocity dependence of the wave resistance is determined in addition to the indi- 
cated velocity dependence of the kernel w(r) by the form of the distribution of mass sources. 
For distributions modeling a body immersed in an incompressible liquid, the total intensity 
of the sources, which is proportional to the mass flow, should become zero and, therefore, 
the term with a I drops out of the formula for the wave resistance. When bodies are modeled 
with distributions of the dipole type 

~ dxm(r)=O, d==- y drxm(r)=/=O (1.3) 

the expansion of the wave resistance in velocities, which corresponds to (1.2), becomes 

s~ = ~ ( l ~  ,o + O + o 

Od 2 = - -  ~ d r  d r '  x x '  m ( r )  m ( r ' )  I 2  (Y - -  Y ' ,  z - -  z ' ) .  

(1.4) 

It is remarkable that the main high-velocity contribution here is determined by a general 
characteristic of the distributions of sources equivalent to the body (partially unknown or 
difficult to find) such as the total dipole moment d. Even the next term of the expression, 
however, depends on much larger details of these distributions and, hence, the shape of the 
bodies. 

Besides the implicit velocity dependence indicated above there also is an implicit 
velocity dependence of the shape of the mass sources. In a homogeneous incompressible liquid 
with a linear description the latter is also linear: m ~ v0/s d = do ~ v0s ... (60 is 
the characteristic size of the body). A dimensionless parameter Fr = v0/(Ns 0) arises in a 
stratified liquid characterized by a buoyancy frequency N and the velocity dependence of the 
source is more involved: d = v0s = d0f(Fr)/f(~), ... �9 

It is to be expected that at velocity expansions analogous to those discussed above, 
which in the limit Fr + ~ lead to the result for a homogeneous liquid (in particular, d + 
do), are valid for sources at high velocities. This expectation is supported by the example 
of a flow of a uniformly stratified liquid around a cylinder. According to [3, 4] the coef- 
ficients of an equivalent round cylinder of radius s of a multipole expansion of the mass 

source 

m = - -  d.-q~-gVx + q ~  3 ~  ~ z  2 + . . .  

are given at high values of Fr by the estimates 

d i _ ~ ( l n  2 F r  / l n F r ~  
- =  + § ot 

q, t + o / l n F r ~  q2 ( I ) 
doi o 12 Fr - - ~  l Fra ]' dol---~ = 0 ~ . . . . . .  

so that at an accuracy o(in Fr/Fr 2) the discussion can be confined to dipole sources with di- 
pole moment do characteristic of a homogeneous liquid. Moreover, it turns out [4] that such 
an approximation works fairly well up to Fr z i. 
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Leaving only the leading terms of the high-velocity asymptotic form of the wave resis- 
tance in Eq. (1.4), therefore, we can take the values of d and C in a homogeneous unstrati- 
fied liquid, do = v0E03A0 and Co, to be the characteristics of the sources. We rewrite the 
formula for the wave resistance in terms of A0, C0, and Fr as 

/u In Fr + C O 
R ~  o o  32~ Fr2 ,, Fr  >> t .  ( 1 . 5 )  

For a body of arbitrary shape the ratio d0/v 0 = s consists of the volume of the body and 

the apparent volume (mass) [5]. In particular, for a sphere of radius s we obtain d0/v 0 = 
4~s + 2Zs i.e., Ao = 2~. 

The expression for C in terms of the mass sources is simplified if the discussion is 
confined to sources localized in the horizontal (z = O) or vertical (y = O) planes. Formula 
(1.4) with allowance for 

12 (~, O) = 12(0,. ~) = I~(0 ,  ~) - -  -~- = I~ (~, O) + -~-  = l n - - 7  + -~ -  

in the case of plane horizontal distributions of dipole sources becomes 

B 32nv~ dy dg' ]n ?N IV --  Y' I 4 

D (y) 5 (z) = S dx  x m  (r). 

Exactly the same formula with the exchange y ~ z is valid for sources smeared in the vertical 
plane. By their general form they resemble the well known Karman formula for the wave resis- 
tance of an elongated body moving with supersonic velocity [6]. The mass sources here, how- 
ever, are distributed over a plane and not only in one direction of motion. For one-dimen- 
sional longitudinal distributions, as is clear from (1.6) and the initial formula (i.i), the 
wave resistance becomes infinite. This paradox of an infinite wave resistance is due to the 
exaggerated role of short transverse internal waves, making logarithmically larger contribu- 
tions to the resistance, with such modeling of bodies. These contributions are annihilated 
by interference when the transverse nonlocal nature of the modeling sources is taken into 
account. 

2. Motion of a Body in a Layer of Finite Depth. The wave resistance of mass sources, 
moving uniformly horizontally in a horizontal waveguide between hard caps z = 0 and z = h, 
filled with a stratified liquid, is represented as the sum of independent contributions from 
various wave modes [i]: 

R = E B~ = -~o d r d r ' w , ~ ( x - - x ' , y - - / ;  z , z ' ) m ( r ) m ( r ' ) ,  

i y/< w~(x ,  v; z, z') = dk ~o~H(zn) @~ O% cos~%cos _ _  
2nk g ~ n  Oz I Oz 2 v o v o 

0 

( 2 . 1 )  

The integration over z is carried out here from 0 to h; <n ~ kav02 - ~n2; H(Kn) is: the Heavi- 
side function; and ~n = ~n(k, z) and ~ = ~n(k) are the eigenfunctions and eigenvalues of 
the boundary-value problem 

[ 0 3 __ k~ k s ] 

(0  n 

For distributions of sources of the dipole type (1.3), equivalent to the immersed body, 
Wn(0, y; z, z') does not make a contribution to R so that when estimating the resistance of 
bodies from Eq. (2.1), we must replace w n by 6w n ~ Wn(X , y; z, z') - Wn(0, y; z, z'). In 
the case of high velocities (v 0 >> s where ~n < Nmax < ~) in the first approximation 
we have 6w n = 82Wn/SXalx=0X2/2 and the formula for the wave resistance could be rewritten as 
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[ s e e  Eq. ( 1 . 6 ) ]  

R 

h 

~o o ~ D (y, ~) D (y,  r) ,  
=0 

D (y, z) = ~ dx  x m  (r). 

( 2 . 2 )  

The solution of the problem for the eigenvalues for a uniformly stratified liquid is 
simple: 

N2k2 V 2 . anz 
(02 = k2C2 = ]c 2 ~_ (nn/h.)2 ,~ ~ n  = ~ S i l l ~ , .  

finding the kernel in the resistance formula (2.2) comes down to calculating the integral of 
the elementary functions 

02wn 

X~O 

1(~, ~0 -i [ dq 
0 

N ~ ;mz Tcnz' ( n n l y h - - y '  Nh ~%~,~ cos ~ cos -7-  I I ~nUO] 

q~Z(~+q~ ~) COS (~q ~ ~ + q__~--'~ ~ ) 
1 / ( t  + q~)~ (t  + q'~ - n ~) t + q~ " 

( 2 . 3 )  

The latter is particularly simple at q << i: 

I(~, O) = (~/16)(t + I~1 --  ~2) exp (--I~l), ( 2 . 4 )  

which makes it possible to write a formula for the wave resistance of bodies moving in a 

Nh 
waveguide with supercritical velocities v 0 >> -~ = cl0 --- lim c I i> c I > c~, i.e., faster than all 

k-*O 

the internal waves, as 

R=n2v---Yoo ,-7 d y d y ' I  - C ] . V - - y ' [ ,  0 M, , (g)3 , ln( f ) ,  

h 

M " " C d ~ atzz C ,* tY) --=- J z cow ~ j dx xm (r), 
0 

( 2 . 5 )  

which gives the asymptotic dependence of the resistance in the waveguide on the Froude number 
(at Fr >> i) of the power-law type R ~ i/Fr 2 (the discussion is similar to Sec. i). 

Compared to the case in the analogous asymptotic form for a boundless liquid [see Eqs. 
(1.6), (2.4), and (2.5)], the leading term of the high-velocity asymptotic form of the resis- 
tance of bodies in a waveguide is much more sensitive to particular features of the equiv- 
alent distributions of mass sources and, hence, the shapes of the bodies. 

The fact that as the depth of the waveguide increases (h + ~) the high-velocity asymp- 
totic form R ~ i/Fr 2 does not go over into the asymptotic form R ~ in Fr/Fr 2 for a boundless 
liquid is not surprising. The asymptotic form for a waveguide is "intermediate" since it 
was obtained on the assumption that v0~ >> hN. 

From (2.3)-(2.5) we can see that the higher wave modes with n >> n o = [h/(~s for dis- 
tributions of sources that are transversely nonlocal make a small contribution to the high- 
velocity asymptotic form (v 0 >> ci0) of the resistance. The contribution is suppressed expo- 
nentially [see Eq. (2.4)] along the horizontal and because of rapid oscillations [see Eq. 
(2.5)], along the vertical. 

The result (2.5) can be simplified substantially for lower modes with n << no (it is 
understood that no >> i) and the leading term of the high-velocity asymptotic form for bodies 
that are small in comparison with the waveguide depth (s << h) depends only on the dipole 
moment of the source distribution. This conclusion, we must bear in mind, is valid only out- 
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side the neighborhood of zeros of the functions cos (~nz0/h) (z 0 is the coordinate of the 
horizon of the motion of the symmetry center of the body), since the simplification is based 
on the approximate estimate 

i cly M n  (V) = J dr x m  (r)  cos  
~nz  o ~ n z  

�9 - - u ~ d c o s - - E ,  

which requires refinement near these zeros. 

Finally, the formula for the wave resistance can be limited, with acceptable accuracy, 
to a finite number of terms with the particularly simple (with the above proviso) form of 
the lowest terms 

_ _  2 ~NZ~ X~d~ ~t cos --f- (n<<n0). 
( 2 . 6 )  16av~ 

n~_~n 0 

If we use the estimate mentioned above for all the terms of the sum (and not only at n << no), 
we arrive at an approximate formula for the resistance in a waveguide: 

N4d 2 ~ ~nz o iv ~o~o h 
R ~ ~-?2T_ 4 in  s i n  ---U" ~ In  -- 

32r~v o 32n Fr 2 lo t 

F r  >> h/lo >> t .  

An entirely different formula is obtained if we ignore the transverse nonlocality of the 
sources modeling the body. At ~ = 0 the integral from (2.3) and (2.5) reduces to complete 
elliptic integrals 

3114I(O,~l)=I~tO12--1)K(@)--~l(N2--2)E(@),: ~>I, 

t 2  0] 2 - -  1) K (n)  - -  (~l 2 - -  2) E (~1), ~1 < I 

and becomes independent of the number of the constant I(0, 0) = ~/16 at D = Nh/(~v0n) << i, 
i.e., for modes with high numbers. The wave resistance [see (2.5)] for one-dimensional 
longitudinal distributions of sources, therefore, is a series in the modes that is logarith- 
mically divergent at high numbers [see (2.6)]: 

N 4 d  2 n~.~l I ~nz o 
R ' ~ 1 6 n v ~  = ~ COS2 h " 

This is analogous to the situation in a boundless liquid. The vertical component k z of the 
wave vector is quantized (k z = zn/h) in a waveguide layer of a uniformly stratified liquid 
of finite thickness. A logarithmically large contribution from high modes, therefore, corre- 
sponds here to the logarithmically large contribution with large vertical components of the 
wave vectors in a boundless liquid (Sec. i). In both cases the "paradox of an infinite wave 
resistance" is due to the exaggeration of the contribution of short transverse waves in the 
modeling of bodies with one-dimensional longitudinal distributions. 

3. Two-Dimensional Problem. The differences between a boundless liquid and a wave- 
guide of finite depth manifest themselves even more clearly in the two-dimensional problem. 
The formula for the wave resistance in a boundless liquid can now be written as an integral 
quadratic form, similar to (i.i), with the following kernel of w(x, z): 

N 

ow 1 &o I / - N  - - ~ -  co 2 s i n  - -  cos  
ox 2~v ~ v ~ v ~ 

For source distributions of the type (1.3) at high Froude numbers (Fr = v0/(Ns >> i) the 
leading term of the asymptotic form depends only on their dipole moment: accordingly, with 
the same accuracy we can use the dipole moment from the theory of a homogeneous liquid: 
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jV3d N 2 / 3 A  2 
- '  ~ 0 - 0  R ~ "" F r > > t .  (3.1) 

Here A 0 = d0/(v0Z0 2) is the dimensionless dipole moment of the distribution of mass sources, 
equivalent to a body with a homogeneous liquid flowing around it. It is 2z for a round cylin- 

der of radius s 

In the case of transverse horizontal motion of a cylindrical body in a waveguide layer 
of finite depth the wave resistance of the distribution of mass sources equivalent to the 
body is the sum of independent contributions of a finite number of modes [i]: 

h 

y R=XRnn =~o dxdx'  d zdz 'wn( z - - x ' ;  z, z ' )m(x,  z)m(x' ,z ' ) ,  
0 

v~ I Oc~ I - t  0% (k~, z) o%~ (k~,, z') H (c~ o -- Vo) wn (x; z, z') = -~- ~ 2/k=k ~ cos k~x oz o~' 

(k n is the unique root of cn(k) = v0 with fixed number). From the formula for w n it is clear 
that the series in the modes breaks off at the term for which Cn+1, 0 < v0 < Cn0. Since the 
velocities of the internal waves decrease monotonically as the mode number increases, the 
number of excited waveguide modes obviously decreases as the velocity grows. 

In the case of a uniformly stratified (N = const) liquid the wave resistance of bodies 
modeled by distributions of the type (1.3) is written, as high Froude numbers (Fr = v0/ 

(Ns 0) >> i) in the simplified form 

n m 

R= ha 

h 

M ~  = dz cos 1-7-- dx x m  (x ,  z), ,m [~---~]. 
0 

Since the condition for the emission of waves in the two-dimensional problem implies that 
n m ~ i, with this accuracy we can go over from M n to the dipole moment d (M n = d cos ~nz0/h) 
with the same proviso concerning the nodal points as in Sec. 2. The sum over the modes is 

then easily calculated: 

-/{ = t2h3 nm (nm + i) (2nm + l) 
3 ~ sin(2n m+i)~  

sin ~ J 4 0~ 2 

Nh ~z o 
(3.2) 

Here the asymptotic formula has been obtained for an arbitrary distribution of sources of 
the dipole type (1.3) in the limit of high values of Fr. It coincides with the exact formula 

that holds for a point dipole for any Fr [I]. 

At n m >> i the reistance formula (3.2) for a waveguide goes over into formula (3.1) for 
a boundless liquid. This happens because the conditions Nh/~ >> v 0 >> Ns are satisfied here. 
As the velocity of the body increases the number of excited modes in the two-dimensional 
problem drops (only one mode is excited at Nh > ~v 0 > Nh/2) and at supercritical velocities 
(in a uniformly stratified liquid at v 0 > ci0 = Nh/~) radiation does not occur. Therein lies 
the distinctive feature of the two-dimensional waveguide problem. 
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ONSET OF COHERENT LARGE-SCALE MOTION IN A PLANE TURBULENT WAKE 

O. B. Budneva and O. A. Likhachev UDC 532.5117.4+532.526 

In the present article we give the results of a theoretical investigation of the re- 
sponse of a plane (two-dimensional) turbulent wake to an external harmonic disturbance. The 
underlying concepts and the approach used for the stated problem are discussed in [I]. Apart 
from the fact that the flow geometry differs from [i], we also consider the influence of 
crossflow variation of the turbulent viscosity on the evolution of large-scale disturbances. 

i. Self-Similar Plane Turbulent Wake. Following [i], we introduce the turbulent Rey- 
nolds number for a self-similar wake: 

Rew = uob~w(----- const ) ,  (1. I )  

where VT(X) ~ u0b is a characteristic turbulent viscosity in the cross section of the wake 
at the longitudinal coordinate X = (x - x 0) measured from a fictitious origin x0, and u0 and 
b are local velocity and length scales. The length scale is given by the relation 

b = ( v ~ X / U ~ ) l / 2 .  (1.2) 

The resistance offered by the body against a flow with velocity U~ has the form 

F = 9 JU(U--U=)@ (--pUiO) ( 1 . . 3 )  

(O is the momentum loss thickness). We represent the average flow velocity in self-similar 
far-wakes by the expression 

U = U ~ [ 1  - -  ~%(~)] ,  V = U ~ o ( ~ )  ( 1 . 4 )  

(~ = u0/U~ << 1 and ~ = y/b is the dimensionless transverse coordinate). We rewrite Eq. (1.3): 

O=sbd~--s~-bYvJ.= fffib(q) dq, n = i ,  2. (1.5) 

Disregarding the term O(e 2) in Eq. (1.5) and making use of Eqs. (I.i) and (1.2), we obtain 
expressions for the local scales: 

uo /u~  = c ( X / B e ~ ) - v t  b = C(X/Re~)V~ C = (O/J~)vt ( i . 6 )  

We express Re T in a form suitable for experimental evaluation: 

Re~ = (Xuo)/(bU~).  (i.7) 
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